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Section 1 Overview of CONQUER 

1.1 Introduction 

Agile Information Control Environment (AICE) provides capabilities required to observe, 
understand, predict, manage, and, especially, control information flows in support of military 
operations. AICE technologies enable information infrastructure management to be mission 
driven (i.e., infrastructure configuration is dynamically configured so that information is 
exchanged in a manner commensurate with mission objectives). Real-time information flows, 
supporting mission- or life-critical applications within a shared communication environment, are 
the primary motivators for the AICE development effort. AICE enables dynamic information 
control for the war-fighter on the battlefield through the use of quality of service (QoS) measures. 

This report first describes the overall AICE architecture, and focuses on the design, 
implementation and performance of the Adaptive Information Control component developed by 
Honeywell, Boston University and ISX Corporation. 

1.2 AICE System Architecture 
The AICE system is composed of three interacting functional components: Information Policy 
Management (IPM) [FunkOO], Adaptive Information Control (AIC), and MetaNet [FalOO]. IPM 
uses multiple commanders' policies regarding network resource allocation, resolves any 
differences among them, and computes the importance of individual requests in response to 
queries from the AIC component. The AIC component tracks the usage of current network 
resources and decides whether or not to grant the request, and if granted, the level of the resource 
to allocate. MetaNet interacts with the underlying networks to set up the channel and provides a 
uniform interface to a set of underlying heterogeneous networks. 

All components interact with each other via well-defined interfaces expressed in the Interface 
Definition Language (IDL). The AICE components and their DDL interfaces were jointly 
developed by the AICE program participants [TRW99]. 

Figure 1 illustrates the basic interactions associated with channel request submission. External 
clients (e.g., military personnel) make a request for a channel, specifying the time and duration of 
the channel and associated channel QoS parameters, such as bandwidth and the .'utility' of 
receiving a specific bandwidth. AIC receives the request and determines both the "importance" of 
the request, and the available resources from IPM and MetaNet respectively. AIC determines if 
the channel can be allocated or not and informs the external client of the result. 
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Figure 1 - AICE Functional Components 

Each AICE component is described in more detail the following sections. 

1.2.1 IPM 

Information Policy Management (IPM) provides an interface to commanders spanning all 
echelons to control the allocation of resources used to exchange information across the battle- 
space in accordance with mission objectives. In IPM, disparate policy inputs from commanders 
are formulated to be a consistent and covering policy. In this approach, a policy represents the 
commander's desired allocation of communications resources during the execution of a mission; 
the policy takes the form of a set of general and specific statements about the priorities, 
constraints and objectives for information flow. IPM assesses the "importance" of a channel 
request based on its internal policy. The importance is quantified and used by AIC to prioritize 
channel allocations. 

1.2.2 MetaNet 

MetaNet serves as a uniform AIC entry point and resource assignment mechanism for channels 
that span heterogeneous networks. MetaNet provides the concept of abstract channels on top of 
the physical resources via Network Adapters. MetaNet 'wraps' the actual networks that support 
connectivity between host machines. MetaNet defines a Point of Presence (PoP) as the point of 
attachment of one or more host machines. Via MetaNet PoPs, MetaNet hides the technology 
specific details of the underlying networks and allows QoS provisioning across military and 
commercial networks. One or more host machines are called a "hostgroup". Each hostgroup is 
uniquely named and made known to MetaNet. MetaNet defines a single logical path between 
each host group pair as MetaNet Links. The physical path that underlies a MetaNet Link can 
change over time and thus the available network capacity of a MetaNet Link may change over 
time.  In addition, two or more logical MetaNet Links may be 'dependent' on each other due to 



their mutual reliance on one or more physical links. MetaNet provides priority assignment to 
channels, so that the existing channels can be preempted by ones of higher priority. 

1.23 AlC 

AIC performs two central functions, policy application and resource allocation. As stated earlier, 
an external client submits a channel request with a QoS parameter in the form of a discrete 
bandwidth/utility curve. The Channel Request Processor (CRP) obtains the importance of the 
request from IPM, and scales the requested utility to form a "conditioned" channel request, which 
is submitted to the Resource Allocator (RA). Currently our implementation does not condition 
the Utility function. The RA then obtains the latest resource availability information from 
MetaNet and attempts to allocate the new requested channel. This may result in either a Reject, 
or Accept accompanied by the set of existing channels that must be preempted or modified to 
guarantee the acceptance. The RA determines an allocation of network resources (e.g., 
bandwidth) in order to maximize the aggregate utility or 'value' of the allocated channels. If the 
channel was accepted, the CRP performs channel setup with MetaNet. The channel allocation 
and optimization algorithm will be described in the next section. 

1.3 AIC Channel allocation Algorithm 

We discuss here the primary algorithm developed by Honeywell Technology Center. Other 
algorithms developed are enclosed in the sections to follow. The discussion below will use the 
following terms and definitions: 

• Priority: Every channel request is assigned a certain priority based on the importance of the 
request. In this paper, we will use integer values from 1 to 10. In the ensuing discussion, note 
that a lower numerical value for priority implies a higher priority (1 is the highest). 

• 

• 

• 

Time Intervals: Variables such as network capacity are functions of time. Here, we abstract 
this information in terms of finite intervals of time, typically one hour. MetaNet currently 
reports its available Link capacity in terms of one hour time intervals, up to a maximum of 24 
hours 

Available Capacity: The available capacity of a link in a particular time interval, is the 
capacity that is free to be allocated between the corresponding hostgroups, in that time 
interval. Note that this information is a function of time (interval). Available capacity for a 
link for a certain priority is available capacity assuming that all channels of lower priority are 
preempted. 

Maximum Capacity: The maximum capacity of a link between two hostgroups is the sum of 
capacities of all potential channels that can be set up between the hosts in these hostgroups. 
This information is, for practical purposes, quasi-static. 

Link Dependencies: Links LI and L2 are said to be dependent if they share common 
resources for channel set-up. Link is an abstract concept - hence, it is not necessary that all 
channels set up over LI should compete for resources with the others set up over L2, 



however, they might be.  Dependency is binary information - 1 if two links are dependent 
and 0, if not. 

• Utility function: Each request quantifies its 'worth' with a Utility function. This captures the 
delivered utility to the channel request as a function of QoS. It could in principle be a 
continuous function, piecewise continuous, piecewise linear or even a simple set of discrete 
points. In this paper, we will consider a set of discrete points in 2-d space where the QoS 
attribute considered is bandwidth. Typically higher bandwidths are associated with higher 
utility. 

• Bottleneck Priority: The highest priority level where there are not enough resources available 
to satisfy even the minimum requested QoS attribute. This is calculated for an individual 
time interval. 

• Run: A consecutive series of time intervals that can support the requested resources for the 
requested duration. 

The channel allocation problem will be posed as follows. Consider a request i of the form: 

rj(Li, pb {uy, qyMi.o, ti,f,, d). 

Here, L; is the corresponding MetaNet Link and pi is the priority of the request, {UJJ, qij} is the 
set of j discrete points of a utility function which maps each QoS parameter choices (bandwidth) 
to its utility. tj?0, t;?f define the start and end time boundaries of the request, and d is the duration 
of the request channel. 

The Admission Control and Resource Allocation (ACRA) problem is to compute: 

• If channel i can be admitted. 

• If it can be admitted: 

• When the requested channel will begin and end within tjo, tu 

• The amount of resources that will be allocated to it, i.e., which point in the Utility 
Function was selected. 

• The set of allocated channels that need to be preempted/degraded for admitting /. 

The following assumptions are made: 

• A higher priority channel cannot be preempted if the requested resources can be freed up by 
preempting lower priority channels. This is due to the strictly priority based allocation policy 
followed. 

• A channel of priority p may preempt one or more channels of the same priority based on 
delivered utility. 

• We know the available link capacity per priority for the time intervals of the request. 



• We know the Maximum MetaNet Link capacity. 

• We know which MetaNet Links are dependent on each other. 

Let Tj be the set of predefined time intervals overlapping and included in (tj,o, tj,f). Enough 
resources are available at a particular priority level p for a particular time interval t if: 

Min{qa'}>Min{qij} (1) 

Here, qap
c is the available QoS parameter (e.g., bandwidth) in time interval t at priority p, and 

Min{qi }is the minimum value of the QoS parameter requested. For a given request, we use (1) 
j 

to identify the bottleneck priority pi   for each time interval in Tj. This is compared with the 
priority of the request, with the following possible outcomes: 

• Pib>pi - The time interval can support the request, i.e., there are enough resources to support 
request i by pre-empting some lower priority channels. 

• pib=pi - The time interval may be able to support the request if the utility of the request is 
sufficiently high. The utility optimizer will make the admission decision. 

• Pib<pi - The time interval cannot support the request. 

We then find 'runs' of successive time intervals in Ti for which Pib>pi or Pib=pi such that the 
duration d of the request can be accommodated. There may be many such candidate runs in Tj. 
In order to select which run to allocate, we apply the following test. For each candidate run we 
identify the most resource constrained time interval, i.e., that with the highest bottleneck priority 
Pib. Then we select the run with the lowest high pjb. This is the least bandwidth constrained, i.e., 
preempts the least number of lower priority channels. 

Optimization occurs over the channels at the bottleneck priority. In the event that the priority of 
the submitted request is the bottleneck priority, the optimization determines the channel 
admission decision. In the event that the bottleneck priority is lower than the requested priority, 
the optimization selects those channels that deliver the most utility given the resources will have 
been reduced by the newly admitted channel. 

We consider 'active' channels to be more valuable than 'pending' channels. While the priority of 
a channel cannot be changed, its utility can be modified to reflect the increased value of a 
channel based on its % completion. In this way, the optimizer will be less likely to preempt an 
active channel in order to admit a new channel. 

An example formulation is follows. Let E;,p={Set of all competing channels at priority p}. Let D 
be the fraction of the time completed for a channel beyond which it is weighted higher. For 
example, if D = 0.5, then channels which have completed half their duration are weighted higher. 
Let Mi)P={Set of all higher weighted channels}. Let M be defined such that MD>=1 for the 
channels in Mj>p. Set L,P=Ei,p-MijP, which includes the new request if the optimization problem is 
solved at the requested priority. The resulting optimization problem is: 



Max X X Mayujui,i + % X ^ A; 
I'eWp   j ist,   ; 

'      j 

1 y,.j * i    v<" 

y,.7e{0,l} 

(2) 

This defines an objective function that maximizes the delivered utility, subject to the constraints 
that the available bandwidth is not exceeded, and only one choice is made from the bandwidth 
utility function points. Formulation (2) is an extension of the class of problems described in 
[Mart90, Lin98] 

We have implemented this in the AIC RA. 

1.4 AIC implementation 

Honeywell has implemented AIC, and emulated versions of IPM, MetaNet and an external client 
in order to exercise and demonstrate AIC. The software is written using Microsoft Visual C++ 
6.0 on Windows NT4.0. The inter-component CORBA interfaces are implemented using Iona 
Technologies Orbix V3.0.1 for Windows NT. We also use ILOG's CPLEX 6.5 linear 
programming problem solver. 

The primary classes of the AIC component software are illustrated in Figure 2. 

HTC RA BU RA 

Figure 2 - AIC software architecture 

AIC uses three data structures to manage its channel allocations: the channel table in the CRP, 
and the Constraint and MetaNet Link tables in the RA. The RA is implemented as a base class, 
which handles general table maintenance but no allocation algorithms. The allocation algorithms 
are implemented in RA subclasses. HTC and Boston University have each implemented a 
channel allocation algorithm as two independent subclasses. 



The Channel Table is a dynamic list of entries, where each entry captures state information for a 
channel as it is submitted for admission, awaits activation, runs, and eventually completes (or is 
preempted). The MetaNet Link table contains information regarding link dependencies, and total 
link capacity information. Currently, this is a static table initialized once from MetaNet. This 
table must eventually become dynamic since Link capacities and dependencies may change over 
time. The Constraint table is a 3-dimensional array of MetaNet Link capacity data organized by 
time interval and priority level. This table is updated with Link capacity information from 
MetaNet prior to each allocation decision. 

The following call sequence describes the channel request submission and allocation procedure 
implemented by the AIC component. 

1. GetEndToEndConfigurationConstraintsO called by AIC to initialize the RA's MetaNet Link 
table. 

2. Initial constraints returned by MetaNet and stored in the Link table. 
3. RequestChannel() call received by CRP from an external client. 
4. Channel table populated with pre-allocation channel request information. 
5. GetlmportanceO call to IPM made. 
6. Importance value returned. This value is mapped to a MetaNet priority. Additional shaping 

of the request's Utility function can take place at this point, to form a "conditioned" channel 
request. Presently, we do not shape the utility function. 

7. Channel table updated to reflect the priority assignment. 
8. Policy Manager passes the conditioned channel request to the RA. 
9. GetAvaliableEndToEndCapacityO called by AIC to initialize the RA's capacity table. This 

ensures up to date link capacity data. 
10. Link capacity information returned by MetaNet and stored in capacity table. 
11. Allocate() called on the channel allocation algorithm to determine admission decision. If 

accepted, preemptable channels and modifiable channels are also determined. 
12. ModifyChannels() called if the channel was accepted, and existing channels must be 

modified to accommodate the new channel. 
13. SetupMetaNetChannelO call to MetaNet. This call also supplies the preemptable channel 

list. 
14. Return from SetupMetaNetChannelO. 
15. Update channel table with the "provisioned" QoS. 
16. Return to external client with channel admissibility information. 
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Figure 3 - Allocation function call sequence 

1.5 Results 

AIC has been tested under various scenarios. For purposes of illustration, we describe a set of 
simple test cases to demonstrate AIC's channel allocation characteristics. The MetaNet topology 
used for all test cases was: 

• Three hostgroups:   "hostgroupO",  "hostgroupl",  and     "hostgroup2",  with one host per 
hostgroup. 

• hostgroupO - hostgroupl & hostgroupO - hostgroup2 are Dependent links. 
• Maximum channel capacity for each link is 600 bandwidth units. 

We exercise the following AIC channel allocation characteristics: 

• Channel rejection by optimizer 
• Channel preemption by optimizer 
• Priority-based Preemption 
• Use of Dependent links 
• Use of multi-choice Utility function 
• Modifying QoS of allocated channel 

Each characteristic is demonstrated below. Each request is stated, followed by the result in the 
form of a channel table listing. The requests are of the form: 



Request<#>: <Hostgroup>-$< Hostgroup>, p = <priority>, {BW =<bandwidth>, u =<utility>}+ 

The results are of the form: 

Result:   <accept or reject> 
Preemptable:   <list ofAIC channel numbers> 

Channel Table: <set ofchannels> 

The requests all overlap in time in order that they compete with each other for resources, so the 
specific time and duration parameters are not shown. 

1.5.1 Rejection by Optimizer 

Here the optimizer will determine that the aggregate utility of the existing allocated channels is 
better than that of the new request. 

Requestl: 0-^1, p = 6, BW = 300, u = 0.3 
Result:   Accepted 

Preemptable:   None 
Channel Table: AIC1, P:6, U:0.30, Bw:300.00 

Request2: 0->l, p = 6, BW = 300, u = 0.2 
Result:   Accepted 

Preemptable:   None 
Channel Table: AIC1, P:6, U:0.30, Bw:300.00 

AIC2, P:6, U:0.20, Bw:300.00 

Request3: 0^1, p = 6, BW = 500, u = 0.4 
Result:   Rejected by optimizer 

Preemptable:   None 
Channel Table: AIC1, P:6, U:0.30, Bw:300.00 

AIC2, P:6, U:0.20, Bw:300.00 

1.5.2 Preemption by Optimizer 

Here the optimizer will use the utility of the requested channel to determine that the single utility 
of the new request is better than that of the existing allocated channels. 

Requestl: 0^1, p = 6, BW = 300, u = 0.3 
Result:   Allocated 

Preemptable:   None 
Channel Table: AIC1, P:6, U:0.30, Bw:300.00 

Request2: 0->l, p = 6, BW = 300, u = 0.2 
Result:   Allocated 

Preemptable:   None 
Channel Table: AIC1, P:6, U:0.30, Bw:300.00 

AIC2, P:6, U:0.20, Bw:300.00 



RequesO: 0->l, p = 6, BW = 500, u = 0.6 
Result:   Accepted 

Preemptable:   1,2 
Channel Table: AIC3, P:6, U:0.60, Bw:500.00 

1.5.3 Priority-based Preemption 

This example allocates 'low' priority channels to fill a link, and then issues a request with a 
'high' priority, to force the RA to recommend some channels to preempt.. The link capacity is 
600 units. Note: The utility of each request is ignored by priority-based preemption. The RA 
will preempt only the channels necessary to free the required number of resources. 

Requestl: 0->l, p = 3, BW = 200, u = 0.3 
Result:   Accept 

Preemptable:   None 
Channel Table: AIC1, P:3, U:0.30, Bw:200.00 

Request2: 0->l, p = 4, BW = 200, u = 0.3 
Result:   Accept 

Preemptable:   None 
Channel Table: AIC1, P:3, U:0.30, Bw:200.00 

AIC2, P:4, U:0.30, Bw:200.00 

Request3: 0-»l, p = 5, BW = 200, u = 0.3 
Result:   Accept 

Preemptable:   None 
Channel Table: AIC1, P:3, U:0.30, Bw:200.00 

AIC2, P:4, U:0.30, Bw:200.00 
AIC3, P:5, U:0.30, Bw:200.00 

Request4: 0-^1, p = 2, BW = 200, u = 0.3 
Result:   Accept 

Preemptable:   3 
Channel Table: AIC1, P:3, U:0.30, Bw:200.00 

AIC2, P:4, U:0.30, Bw:200.00 
AIC4, P:2, U:0.30, Bw:200.00 

1.5.4 Use of Dependent Links 

The RA considers all the temporally overlapping channels on dependent links to determine if a 
request should be allocated. This is conservative, since not all channels on dependent link are 
'additive' in their capacity consumption. However, it ensures that MetaNet will always accept a 
channel setup request from AIC. 

Requestl: 0-»l, p = 3, BW = 300, u = 0.3 
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Result:   Accept 
Preemptable:   None 

Channel Table: AIC1, P:3, U:0.30, Bw:300.00 

Request2: 0->2, p = 3, BW = 300, u = 0.3 
Result:   Accept 

Preemptable:   None 
Channel Table: AIC1, P:3, U:0.30, Bw:300.00 

AIC2, P:3, U:0.30, Bw:300.00 

Request3: 0^1, p = 2, BW = 400, u = 0.3 
Result:   Accept 

Preemptable:   1,2 
Channel Table: AIC3, P:2, U:0.30, Bw:400.00 

1.5.5 Use of Multiple-utilities 

This example shows a request with multiple choices for its QoS being admitted at a Qos level 
that maximizes the overall utility at the requested priority level. Initially two requests are 
admitted and accepted at priority 6. The third request contains a 3-point Qos region. The 
optimizer selects the highest utility point in the region at the expense of the two existing channels 
due to its higher utility. 

Requestl: 0->l, p = 6, BW = 300, u = 0.3 
Result:   Accepted 

Preemptable:   None 
Channel Table: AIC1, P:6, U:0.30, Bw:300.00 

Request2: 0->l, p = 6, BW = 300, u = 0.2 
Result: Accepted 

Preemptable:   None 
Channel Table: AIC1, P:6, U:0.30, Bw:300.00 

AIC2, P:6, U:0.20, Bw:300.00 

Request3: 0^1, p = 6, {BW = 300, u = 0.4}, {BW = 400, u = 0.5}, {BW = 500, u = 0.6} 
Result:   Accepted 

Preemptable:   1,2 
Channel Table: AIC3, P:6, U:0.60, Bw:500.00 

1.5.6 Modifying Qos of allocated channel 

Continuing from the last test, a request with multiple choices for its QoS is admitted at a QoS 
level that maximizes the overall utility at the requested priority level. The optimizer also selects a 
new operating point for an existing channel. 

Request4: 0^1, p = 6, {BW = 300, u = 0.4}, {BW = 400, u = 0.5}, {BW = 500, u = 0.6} 
Result:   Accepted 

11 



Preemptable:   1,2 
Channel Table: AIC3, P:6, U:0.40, Bw:300.00 

AIC4, P:6, U:0.40, Bw:300.00 

1.6 Summary 

This report has described the Adaptive Information Controller (AIC) component of the Agile 
Information Control Environment (AICE). AIC implements a communication channel resource 
allocation algorithm that allocates channels according to their priority, and optimizes the 
delivered utility of the admitted channels. Example allocations have been described to illustrate 
the characteristics of the channel allocation algorithm. The current approach has considered only 
one QoS dimension, i.e., bandwidth. As future work, we plan to develop allocation algorithms 
for multi-dimensional QoS problems, and predictive models for admission control and resource 
allocation [Godb99]. 

12 



Section 2 Adaptive Information Control (AIC) Layer 

The following are slides from a presentation made at the DARPA PI meeting in Washington, DC, 
in November 1999. 

»•wwevpiTOiwjpj-iw 

Agile Information Control Environment (AICE) 

Adaptive Information Control (AIC) 

Program Review 
November 4-5, 1999, STA, Arlington, VA 

Pavan Allalaghatta, Nigel Birch, Vipin Gopal, 

Raja Harinath, Sejun Song, Zhi-Li Zhang 

Honeywell Technology Center, Minneapolis, MN 

David Castanon 

Boston University, Boston, MA 
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• Year I Plan 

• Current Status 

• AIC Overview 

• AIC Implementation 

• Plans for the remainder of contract period 

Year I Plan 

IPM 

® CD 

IDM 

AIC JZL Other Applications 

MetaNet 

Component Interaction by Functional Call(s) 
® g=!;:npc:13r:cs 0 

notrtyCtianelStatusO 
® receiveFailureAlertO 

receweConfigurationChangeRe|>ort {) 

©getlmportanceO 

updatelmporlanceQ 
i) s^iipW^aNvifCnanneO 

releaseMetaNetChanne^) 
modifyMetaNetChannelQoSO 
addSinksToMultipointCtianneQ 
removeSinksFromMultpointChannelO 
Ge!En^Tc£näCun!iQ;;^t;OnConstra!M: 
GeiAvaii&bieEndTccniJCapjpiy (; 

© notifyChannelSlatuso 

AICE PAC99 Architecture and Interfaces 
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Interface Implemented by Called by 

getlmportance IPM AIC 

notifyChannelStatus IPM/IDM/External Sys. AIC 

reuuestChanncl AIC IDM/Extemal Systems 

registerCallBack AIC IPM/IDM/External Sys. 

dere«isterCaliBaek AIC IPM/IDM/External Sys. 

SelupMetaNetChannel MetaNet AIC 

GetEndToEndConfigurationConstraints MetaNet AIC 

GetAvaliableEndToEndCapacity MetaNet AIC 

Phase 1 External Interfaces 

AIC layer will support two major functional components 

- CRP - Channel Request Processing 

- RA - Resource Allocator 

Current Status - Milestones 

Major AIC components for Year I implemented (Sep 30, 1999) 

Unit test for AIC components completed at TRW (Oct 5, 1999) 

Boston University (BU) RA added (Oct 14, 1999) 

Unit test for AIC with BU RA completed (Oct 18, 1999) 

AIC Integration completed at TRW (Oct 19, 1999) 

Integration testing completed at TRW (Oct 29, 1999) 
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AIC 

Policy Application 
+ 

Resource Allocation 

MetaNet: »:i 

External Simulator - Overview     _, v 

Implements a simple model of the External Clients 

Design goal: Sufficient to perform AIC unit tests 

Implements a part of the ExtemalToAic interface 
- Aice::ChannelName requestChannel( 

in Aice::SetOfOwnerNames w, 
in Aice::Applicationl_ocation s, 
in Aice::SetOfApplicationLocations d, 
in Aice::ChannelExchangeCharacterization c, 
in AicDataType::UtilityFunction u); 
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• Inputs to AIC: from the console, file, and random. 
• Input data format (from the data file): 

•   timezero = 10W1999 19:00:00 EST 

•   channel = 1 

•   requestTime = 0 

•   source = ehf_satcom ://host0:10 

•   dest = ehf_satcom://host 1:7 

•   owner = 6 

•   exchar = Intel:IMINT:EO 

•   utility = 0.4 

•   requestQoS = BANDWIDTH 
•   bw = 300 
•   startTime = 30 

•   endTime = 330 

•   duration = 120 

•   delay = 0.3 

•   loss = 6 

•   endutility 

•   endchannel 

External Simulator - Overview 
m...."-*.#s#*..'^^                                                 A*««<«^*^^T^*fo^^                                          — ^^'t^'W^»'^^^^^^^» ̂ l-M«\»..'--*..*> .w  »1*i 

•  Example of a request: 

processing   file 

The   Owner   is   :    6 
The  Source  address   is   :   ehf_satcom://hostO:10 

!               The  Destination  address   is   :   ehf_satcom://hostl:7 

1                The   start   time   is   =     1999:10:7:19:0:30 

|                The   end  time   is   =     1999:10:7:19:5:30 

The  requested bandwidth  is   :   300 

The  Utility value   is   :   0.4 

• Example of return values: 
1                  -   If successful: 
!                             •  returned value was  1 

-  If failed: 
I                               •   returned value was  NULL 
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• Implements a simple model of IPM 

• Design goal: Sufficient to perform AIC unit tests 

• Implements a part of the AicTolpm interface 
- Aice::lmportance getlmportance( 

in Aice::SetOfOwnerNames w, 
in Aice::Applicationl_ocation s, 
in Aice::SetOfApplicationLocations d, 
in Aice::ChannelExchangeCharacterization c, 
in Aice::ChannelName channelld); 

• Returns with a random number between 0.0-1.0 

L ,ji. *—-..t J-^: 
MetaNet Simulator - Oyerviewj i 

Implements a simple model of the MetaNet 

• Design goal: Sufficient to perform AIC unit tests 

• For Year I: Implements a part of the AicToMetanet 
interface 

- setupMetanetChannel() 
- releaseMetanetChannel() 

- GetEndToEndConfigurationConstraintsO 
- GetAvailableEndToEndCapacityO 

18 



All links are considered point-to-point 
- no point-to-multipoint 

Supports multiple hosts per hostgroup 
- current scenario: just one host per hostgroup 

Supports hosts belonging to multiple hostgroups 
- current scenario: a host belongs to a single hostgroup 

No explicit topology 
- simplifies implementation 

- provides enough information for AIC to operate 

- topology implied in dependent link information 
• use common link bandwidth constraint to model dependent link 

behavior 

Metanet Simulator - Implementation 

Maintains detailed (to the second) information 
about bandwidth allocations 
- separate information for links and dependent links 

- GetAvailableEndToEndCapacity combines 
both information 

setupMetanetChannel preempts only the 
channels listed in expendable channel list 
- for repeatable experiments 

• AIC does not depend on this behavior 

- can preempt channels even if request rejected 
• simplifies implementation 
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Channel Request Processor (CRP) 

Accepts requestChannel from IDM/External 
Generates the Conditioned_Channel_Request to 
Resource Allocator 

Consists of two components: 
- Receive Request (RR): 

• Receives request from the external systems 

• Populates the channel table 

• Makes getlmportance call to IPM 

- Apply Policy (AP): 
• Receives the returned importance from IPM 

• Maps the importance to priority and shapes the utility function 

• Updates the channel table 

• Generates Conditioned_Channel_Request to Resource Allocator 
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ll'M 

getlmportanceO 

requestChannelO 

I Importance 

External 
Users 

Channel Entry       PfTölfiy 

AIC 

Channel Request Processor (CRP) _ j 

Updated by CRP   

Updated by RA      

Updated by CRP and RA ■ 

Channel Table 

AICChannelTableEntry ( 
std::string ChannclID; 
Aice::SetOfOwnerNames Owners; 
std::string Source; 
Aice::SetOfApplicationLocations Destinations; 
Aice::ChannelExchangeCharacterization ExchangeChar; 
AicDataType: :UtilityFunction Utility Function; 
AicDataType: :UtilityFunction ConditionedChannelReq; 
MetanetType::Priority Priority; 
MetanetType::MetaNetLink *Link; 
MetanetType::ProvisionedQos AllocatedQOS; 
AicDataType: :ChannelStatus Status;   } 

■H 
H 
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Problem statement: 
- A request for setting up a channel i for link L from {tO, tf} is 

received. The request comes with a utility function that maps QoS 
allocations to the corresponding utility. The Admission Control 
and Resource Allocation (ACRA) problem is to compute: 

- Whether channel i will be admitted. 
- If yes, the amount of resources that will be allocated to it and the set of 

allocated channels that need to be preempted/degraded for admitting i. 

Assumptions: 
- A higher priority flow cannot be rejected if the requested resources 

can be freed up by preempting lower priority flows. 

- The following information is known: 

• Maximum channel capacity. 

• Available link capacity per priority for the time intervals for which 
the request is being made. 

• Link dependency information. 

Proposed Solution^ 

Definitions: 

- Request i is of the form r^Lj, p,, {u^, q^}, tj,0, t^f). 

• Lj is the corresponding link 

• Pj is the priority of the request. 

• {Ujj, qjjjs are the set of discrete points which maps the QoS 
parameters, q, (here, q is bandwidth) to their utility u. 

• tj,0, tj,f are the start and end times of the request. 

- qapt is the Available bandwidth in time interval t at priority p. 

- Bottleneck priority level (pb|) 

• The highest priority level where there are not enough resources 
available to satisfy even the minimum requested resources for i. 

Basic Approach 

- Determine the bottleneck priority. 

- Optimize flows at bottleneck priority. This may determine if the 
request is accepted or rejected. 

- Flows of a lower lower priority than the bottleneck AND those 
discarded by optimizer are preemptable. 
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m 

No 

Minfqa'   }>Min{qu}? 
Yes 
—► 

Pi is the 
bottleneck priority 

No 

Min{qa' } > Min{qu 
Yes 

p = Pi — 1      (Next Lowest Priority) 

Min{qa'}>Min{qu}? 
No 

pis the 
bottleneck priority 

Yes 

P - P    1 (Next Lowest Priority) 

Reject i 

Run OPT on pi flows 
& requested flow for 
admit/reject and 
expendable 
channels at p. 

>   Admit i 

Run OPT OPT on 
p. flows for 
expendable 
channels at Pi 

Optimization at Bottleneck Priority 
Flexible knapsack problem (FKP). 

Objective: maximizing the overall 
utility 

Constraint: bounded bandwidth 
allocation. 

0-1 knapsack problem (KP). 

A variation omits j, i.e., no flexibility in 
the value of the QoS parameter. 

-    We have implemented this for AICE 

Adding a Temporal Component 

Changing Utility with time completed, 

alpha is the fraction of the time 
completed. 

-    Weights flows near completion with 
greater utility. 

Ma*XX>VA., 

>'    i 

y,;6{0,l} 

Max £ XW%"ij + XX y>.iu:.i 
ieMp   j fei,   i 

SJ-   XX^M^,,    ■ 
'    j 

X^1    vi 
j 
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ConstrainlTable 

*UpdateConstrainlTable() 
♦incrementCurrentTimeSublntervalO 
♦incrementFurlheslTimeSublntervalO 
*Run() 
"^ClearSublntervalO 
♦GetSublntervallndexO 
*GetMinAvailab1eCapacity() 

MetaNetLinkTable 

*LinklD2LinkName() 
♦LinkName2linklD() 
♦LoadLinkTableO 
♦int HoslName2HostGroupName() 

ResourceAllocator 

*ConditionedChannelRequest0 
+Allocate() 

RA_HTC_Type1 

♦AllocateO ■^AllocateO 

Resource Allocator Constraint Table 

Used by the Resource Allocator algorithm to determine admissibility and 
channel preemption. 

Maintained via GetEndToEndAvailableCapacityO calls to MetaNet. 

Priority 

/   /   /   y 
_/./././        y 

10 

3 

2 

1 

12        3 24 

Time Sub-Interval 

ConstraintTableEntry ( 
MinAvailChannelCapacity; 
AveAvailChannelCapacity; 
MinAvail AggregateCapacity; 
AveAvailAggregateCapacity; 

1    ^ 
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HTCRA BURA 
QOS Parameter Bandwidth. Minimum QoS bandwidth clement. Bandwidth. Uses all QoS vector elements. 

Use of Priority Channels of lower priority are candidates for 
preemption. 

All channels of lower priority arc preempted. 

Use of Utility Utility used to choose among channels of the 
bottleneck priority. 

Utility used to choose among channels at the request 
priority. 

Optimization' 
Method 

Knapsack formulation. 
• Objective Function maximizes aggregate utility. 
• Constraint function bounds the bandwidth 

allocation. 

Branch and bound scheduler. 

Optimizer Input 
channel set 

If request can be satisfied at requested Priority, P: 
• Set of allocated channels at the Bottleneck priority. 

If request cannot be satisfied at requested Priority, 
but can at the next higher priority: 
• Set of allocated channels at requested priority, 

including the requested channel. 

Channels at the requested priority on the requested Link. 

Dependent Links 
used? 

Yes. 
Conservative allocations, i.e., MciaNct will never 
reject an allocation. RA may reject when there is 
bandwidth available. 

No. 
Aggressive allocations. MctaNct may reject some 
allocations due to insufficient bandwidth. 

Optimizer output Set of channels to be preempted at bottleneck priority 
+ lower priority channels. 

Set of channels to be preempted at requested priority + 
lower priority channels. 

RespurceAllocatiqn Exarr^les^.^^    ^ 

The tests were run using the HTC MetaNet simulator 
which simulates the following network topology: 

•   3 HostGroups: hostgroupO, hostgroupl, and hostgroup2. There is 
one Host per hostgroup. 

• hostgroupO—> hostgroupl and hostgroupO—> hostgroup2 are 
Dependent links. 

• Maximum initial Channel Capacity for each link is 600 bandwidth 
units. 
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1.1    Request 1 
Request: 0-»l. 1 = ( BT+0:30 to BT+5:30 ], p = 6, min BW = 300, u = 0.3 

HTCRA BURA 

Result Accepted due to no prior allocations Accepted due to no prior allocations 

Expendable 
Channels 

None None 

Channel 
Table 

A1C1 => MNChannelO, P:6, U:0.30, Bw:300.00 A1C1 => MNChannelO. P:6, U:0.30, Bw:300.00 

1.2    Request 2 
Request: 0-*), l = | BT+fl:30to BT+5:30 |. p = 6. min BW = 300, u = 0.2 

HTCRA BURA 
Result Accepted Accepted 
Expendable 
Channels 

None None 

Channel 
Table 

AICl => MNChannelO, P:6, U:0.30. Bw:300.00 
AIC2 => MNChannel 1, P:6, U:0.20, Bw:300.00 

AICl => MNChannelO. P:6. U:0.30, Bw:300.()0 
A1C2 => MNChannel 1. P:6. U:0.20, Bw:300.00 

1.3    Requests 
Request: 0->]. I = | BT+0:3t)to BT+5:30 ). p = 6. min BW = 5(H). u = 0.4 

HTCRA BURA 

Result Rejected bvoplimi/.er Rejected bv optimizer 

Expendable 
Channels 

None None 

Channel 
Table 

AICl => MNChannelO. P:6. U:0.30, Bw:300.00 

AIC2 => MNChannel 1, P:6, U:0.20, Bw:300.(H) 
AICl => MNChannelO. P:6. U:0.30. Bw:300.00 
A1C2 => MNChannel 1. P:6. U:0.20, Bw:300.00 

Preemption by Optimizer 

1.1     Request 1 
Request: 0->l. t = j BT+0:30to BT+5:30 ], p = 6. min BW = 300. u = 0.3 

HTCRA BURA 

Rl-Mll! Allocated Allocated 

Expendable 
Channels 

None None 

Channel 
Table 

AICl => MNChannelO. P:o. U:0.3t). Bw:300.00 AICl => MNChannelO. P:6. U:0.30. Bw:300.(>0 

1.2     Request 2 
Request: 0->I. t = [ BT+0'30io BT+5:30 |. p = fi. mm BW = 300. u = 0.2 

HTCRA BU RA 

Result Allocated Allocated 

Expendable 
Channels 

None None 

Channel 
Table 

AICl => MNChannelO, P:6, U:0 30. Bw:3(HM)0 
AIC2 => MNChannel I, P:6. U:0.20. Bw:300.00 

AICl => MNChannelO. P:6, U:0.30, Bw:300.00 

AIC2 => MNChannel!. P:6, U:0.20, Bw:300.(X) 

1.3    Request 3 
Request: 0-»l, \ = \ BT+O;30to BT+5:30 ]. p = 6. min BW = 5(H), u = 0.6 

HTCRA BURA 

Result Accepted Accepted 

Expendable 
Channels 

MNChannelO 
MNChannel 1 

MNChannelO 
MNChannel 1 

Channel 
Table 

A1C3 => MNChannel2. P:6. U:0.60, Bw:500.0O AIC3 => MNChannel2. P:6, U:0.60. Bw:5(X>.00 
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1.1     Request 1 
Request 0-»1. p = 3. min BW = 200. u = 03 

HTCRA BURA 
Result Accept Accept 
Expendable 
Channels 

None None 

Channel 
Table 

AJC1 => MNChannelrO. P:3. U:0.30. Bw:200.00 AICI => MNChanncltO. P:3. U:0.30. Bw;200-00 

1.2    Request 2 
Requeslr 0~t 1. p = 4. min BW = 200. u = 0.3 

HTCRA BURA 
Result Accept 
Expendable 
Channels 

None 

Channel 
Table 

AICI => MNChannel:0. P:3. U.0.30. B»:200.00 
A1C2 => MNChannel]. P:4. U:0.30. Bw:200.00 

AICI => MNChamiel:0. P:3. U:0.30. Bw:200.00 
A1C2 => MNChannell. P:4. U:0.30. Bw:200 00 

1.3    Request 3 
Request: 0-»l, p = 5. min BW = 200. u = 0.3 

HTCRA BURA 
Result Accept Accept 
Expendable None Nunc 

Channel 
Table 

AICI => MNChanncl:0. P:3. U:0.30. Bw: 200.00 
A1C2 => MNChannell. P:4. U:0.3(). Bw:200.00 
A1C3 => MNChannel2. P:5. U:0.30. B»:200 00 

AICI => MNChanncLO. P:3. U:0.30. Bw:200 00 
AIC2 => MNChannell. P;4. U:0.30. Bu:2(X).0O 
AIC3 => MNChannel2. P:5. U:0.30. Bw:200.00 

1.4    Request 4 
Request: 0-»l.p = 2. n i BW = 2(K), u = 0.3 

HTCRA BURA 
Result Accept Accept 
F.xp end able 
Channels 

MNChannel2 MNChannell) 
MNChannell 
MNChannel 2 

Channel 
Table 

ATC1 => MNChannell). P:3. LMI.30. Bw:200.00 
AIC2 => MNChannel 1. P:4. U :l)30. Bw 200.00 
A1C4 => MNChannel3. P:2. U:0.30, Bw: 200.00 

AIC2 => MNChannell. P:4. U:l)30. Bw:2tX>.00 
AIC3 => MNChannel2. P:5. U:() 30. B«.:2IK) (H) 
AJC4 -> MNChannel3. P:2. U:().30. Bw:200.00 

; Use of Dependent Links 
* ■•.< *   ■   _•>   ..II-.-»...      -      A.      : ,     „„ t   ™»fc ».   M ■» -J 

1.1     Request 1 
Request: ()->]. p = 3. mm BW = 3(H). u = 0.3 

HTCRA BURA 

Rest] 11 Aecepi Accept 
Expendable 
Channels 

None None 

Channel 
Table 

AICI => MNChannell). P:3. U:0.3(). Bw:3(XUX) AICI => MNChannell). P;3. U:0.30. Bw:3IX).IX) 

1.2    Requ iest2 

Request: 0-»2, p = 3. mm BW = 300. u = 0,3 

HTCRA BURA 

Result Accept Accept 
Expendable 

Channels 
None None 

Channel 
Table 

AICI => MNChannell), P:3, U:0.3(). Bw:300.IM) 
AIC2 => MNChannell. P:3. U:0.3O. Bw:300.(X) 

AICI => MNChannell). P:3. U:0.30. Bw:3(X).(X) 
AIC2 => MNChannell. P:3. U;0.30, Bw:300.00 

1.3    Reqi est3 

Request: 0-»l. p = 2, min BW = 400. u = 0.3 

HTCRA BU RA 

RA Result Accept Accept 

Expendable 
Channels 

MNChannell) 
MNChannel I 

MNChannell) 

MN Result Accept Rejectee! 

Channel 
Table 

AIC3 => MNChanne!2. P:2. U:0.30. Bw:400.<X) AICI => MNChannclO. P:3. U:0.30. Bw:300.(K) 
AIC2 => MNChannell. P:3. U:0.30. Bw:3(X).IX) 
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MetaNet 

Calls to/from external interfaces 

Returns from external interface calls 

Internal AIC calls 

1. GetEndToEndConfigurationConstraints called. 

2. Initial constraints returned by MetaNet. 

3. Constraint Table initialized. 

4. GetAvaliableEndToEndCapacity called. 

5. Initial capacity returned by MetaNet. 

6. Constraint table initialized. 

7. rcquestChannel call received. 

8. Channel table populated. 

9. gellmportance call. 

10. Importance value returned. 

11. Channel table updated further. 

12. Conditioncd_Channcl_Requcst call. 

13. SetupMetaNetChannel call. 

14. Return from SeiupMciaNciChanncl. 

15. Update channel table further. 

16. Return to external system. 

17. Periodic AvaliablcEndToEndCapacity call. 

18. Return from GetAvaliableEndToEndCapacity. 

19. Periodic updates to constraint model. 

20. reeisterCallBack & dercsisterCallBack calls. 

! ;       Further Work (11/99 - 01/99)      .■ _..; J 

Support experimental and evaluation work for 
PAC99. 

Continue unit testing and evaluation at HTC. 

Theoretical analysis of more complex admission 
control and resource allocation problems. 

Support a temporal component for utility function. 
- Allocated channels have greater value as they near 

completion. 

Support point-to-multipoint channel requests. 

Support 'batch' requests. 
- Multiple channels are allocated with a single request. 
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Multidimensional knapsack problem 
(FKP) 

K is the set of all Qos parameters 
considered 

The utility can be a function of multiple 
QoS parameters such as bandwidth, 
delay and jitter. 

In this case, then we have a 
multidimensional constraint, each 
dimension corresponding to a QoS 
parameter. 

Flexible multidimensional knapsack 
problem (FMDKP) 
Here each Qos parameter can have 
multiple values each with its own 
utility. 

Max V yiui 
i 

s.t. ^yrf-i-p 
i 

y, e {0,1} 

IceK 

j 

y,-.;e{0,l} 

Knapsack Problem Classifications 

0-1 knapsack problem (KP). 

- One QoS parameter with one associated utility. 

•   Note: We have implemented this for AIC 

Flexible knapsack problem (FKP). 

- The QoS parameter has 'flexibility' in its assignment. A separate utility is 
applied to each QoS parameter value. 

- The channel has the flexibility to be allocated at any one of the discrete 
points 

Multidimensional knapsack problem (FKP) 

- The utility can be a function of multiple QoS parameters such as 
bandwidth, delay and jitter. 

- In this case, then we have a multidimensional constraint, each dimension 
corresponding to a different QoS parameter. 

Flexible multidimensional knapsack problem (FMDKP) 

- Here each QoS parameter can have multiple values each with its own 
utility. 
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Section 3 Stochastic Flow Placement and Admission Control 

3.1 Assumptions about the Flows 

We assume that flows can be classified into "types'. There are total of AT types. For each type i, 
flows of type i can have a discrete set /,. of possible bandwidth allocations. For a bandwidth 

allocation of c, ., where j e /,, the associated utility for a flow of type / with this bandwidth 

allocation is ui ■. 

Consider a "typical" time interval % . Let Xi be the "average" number of flows of type / arriving 

during the time interval T. In Section 6, we will discuss how these terms can be specified more 
precisely and obtained in practice. For simplicity of exposition, we will only consider the case 
where no priority is associated with flows. Later on, we will discuss how priority can be 
incorporated (see Section 3.5). 

In the following we will consider the problems of 1) maximizing the expected number of flows 
that can be admitted in the system over a "typical" time interval t ; and 2) maximizing the 
expected utility of flows that can be admitted in the system over a typical time interval t . The 
optimization problem formulation is presented in Section 3.2. This formulation is extended in 
Section 3.3 where we address the issue of admission control at a flow arrival instant. In Section 
3.4 we consider the problem of admission control for flows with finite duration. 

3.2 Optimal Flow Placement 

We first consider the problem of maximizing the expected number of flows that can be admitted 
into a system over a "typical" time interval t , given that the average number of flows of type I 
during the time interval % is X{. The total capacity of the system is assumed to be C. This 
optimization problem is formulated as the following linear programming problem. 

3.2.1 Problem Formulation A.l: Maximizing Expected Number of Flows 

K 

maximize  ^ xi 

subject to   xt - ^T j,- j < A,-, / = 1,2,..., K 

K 

i=l  ye/,- 

and Xj j > 0 / = 1,2,..., K , and j £ /,• 
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Let { x*}, i = 1,2,..., K be the solutions to the above optimization problem, where in particular 

x* = ^x* j , and x*. > 0 is the maximal (expected) number of flows of type i that can be 

admitted into the system with a bandwidth allocation of cLj. 

Assume that for each flow type i, cn < c, . for any j e It. Then it is not too hard to see that only 

x*, can be nonzero. In other words, for j e /, and j # 1, JC* ■ = 0. Intuitively, we can always 

admit more flows into the system by allocating only the minimum bandwidth requested by the 
flows. Hence in this optimization formulation, we do not consider the utility of the bandwidth 
allocation accorded to a flow. In the following consider the problem of maximizing the expected 
utility of flows that can be admitted into a system over a "typical" time interval t, given that the 
average number of flows of type I during the time interval i is A,-. This optimization problem is 

again formulated as a linear programming problem, as shown below. 

3.2.2 Problem Formulation A.2: Maximizing Expected Utility 

K 

maximize  ^ ^T xi . u (. . 
i=l jel, 

subject to   xi = ^ Xj j < Xi, / = 1,2,..., K 

;=1  y's/, 

and  xij > 0, i = 1,2,..., K , and j e /,- 

As before, let { JC* }, / = 1,2,..., K be the solutions to the above optimization problem, where in 

particular x* = ^x*j , and x*; > 0 is the expected number of flows of type / with a bandwidth 

allocation of c, .. We can design a simple probabilistic flow admission control algorithm using 

the optimal solutions (this algorithm also applies to the Optimization Problem Formulation A.l): 

x*; 
i A flow of type i is admitted into the system with probability pj - 

1 and   assigned   a   bandwidth   allocation   of   c, j    with   probability. 

Furthermore, we may impose an additional condition that a flow of type 
| imay be rejected if the total number of flows of type ithat have been 

admitted into the system reaches Xt. 

31 



3.3 Flow Admission Control with Memory 

In the previous section, we consider the optimal flow placement to maximize either the expected 
number of flows admitted into the system or the expected utility of flows admitted into the 
system. The solutions to the aforementioned optimization problems lead, to a simple 
probabilistic flow admission control algorithm. This simple algorithm, however, does not take 
any "history" into account: upon arrival of a flow of type i, it is considered admission with 

probability   p. = ——,  and  considered  a bandwidth  allocation  of  ci .   with probability 

* 

pt   = Hr • The number of flows that are currently admitted in the system is not taken into 

account. In the following, we improve this simple admission control by "remembering the 
history". There are two ways we can utilize the "history" information. 

3.3.1 Method 1: Use of Residual Bandwidth 

We use the residual bandwidth Cres of the system as the limiting constraint to determine the 

expected number of "new" flows that can be admitted into the system (in the "next typical time 
interval"). Here Cres equals to the difference between C and the total bandwidth allocated to the 

existing flows. In this method, we implicitly assume that flow arrivals are independent and 
"memoryless" (i.e., Poisson): the "average" (or "expected") number of flows arriving in the "next 
typical time interval" is still Xi. In addition, there are no flow departures in the time interval. The 
optimization problem formulation is presented below. 

3.3.1.1 Problem Formulation B.l.l: Maximizing Expected Number of Flows 

K 

maximize  ^ z: 

subject to   z, = X Z'-J ~ Äi' ' = 1'2'-'K 

K 

i=l ye/, 

and   Zjj ^ 0, / = 1,2,..., K , and j e /,- 

3.3.1.2 Problem Formulation B.1.2: Maximizing Expected Utility 

K 

maximize ^ ^z,-_,-",•; 
;=1  ye/, 

subject to   zt = ^ Zjj < 2,, / = 1,2,..., K 
M 
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y y x. c.. <c £j £j    i,J   i,J res 
'=1 M 

and z, . > 0, / = 1,2,..., £ , and 7 € /,- 

3.3.1.3   Solutions 

Let { z*}, / = 1,2,..., K be the solutions to the either of the two optimization problems, where in 

particular z* = ^ z*j , and z*j > 0 is the expected number of flows of type i with a bandwidth 

allocation of c, .. We have the following probabilistic flow admission control algorithm. 

A flow of type i is admitted into the system with probability pt = —'■—, 
A- 

z* • 
I and is allocated ci . amount of bandwidth with probability p{ -} = —'—. 

I Z' 
I Furthermore, we may impose an additional condition that a flow of type 
I imay be rejected if the total number of flows of type ithat have been 
I admitted into the system reaches A,. 
§ 

Comparing the above flow admission control algorithm with the one at the end of Section 2, we 
see that by replacing C with Cres, the optimal solutions are affected by the existing flows in the 

system. In general, when there are more flows existing in the system, fewer flows will likely be 
considered for admission and be actually accepted. 

3.3.2 Method 2: Optimal Flow Placement with Memory 

As we mentioned earlier, in the optimization problem formulation of Method 1, we implicitly 
assume that flow arrivals are independent and "memory-less" (i.e., Poisson): the "average" (or 
"expected") number of flows arriving in the "next typical time interval" is still Äj. In Method 2, 
we will limit the total number of flows of type i in the system (including both the existing ones 
and those that are to be admitted) to be at most Xi. Intuitively, we could consider all the existing 

flows had arrived in the same (typical) time interval as the new flows. In the objective function, 
we will take the contributions of the existing flows into account as well. (Note this is not 
necessary, since the contribution from the existing flows is a constant. However, expressing the 
objective function in this way makes it easier to read.)  Let ytJ be the number of the existing 

flows of type / with bandwidth allocation c,- .. The optimization problem formulation is 

presented below. 
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3.3.2.1   Problem Formulation B.2.1: Maximizing Expected Number of Flows 

K 

maximize XZk\; "ty.;- 
[=1 jelt 

subjectto     X (zij + yij)<Ai, i = \,2,-.-,K (1) 

1=1 M 

and    zlj > 0, i = 1,2,..., £, and j e lt 

3.3.2.2   Problem Formulation B.2.2: Maximizing Expected Utility 

K 

dmize XIXy+^K, 
K 

maximize 
i=l  je I; 

subject to    X (zi j + yi j) ^ A,-, / = 1,2,..., # (2) 

SS^ + ^/K^c 
/=]  je/,- 

and    zt • > 0, i = 1,2,..., /T , and j e /,- 

Note that because of the constraint (1) or (2), zitj = 0 if ^ y{ j > X{. Hence the number of flows 
M 

of type i that are admitted into the system will never exceed the expected number of arrivals. We 
can replace the constraint (1) in the optimization problem B.2.1 or the constraint (2) in the 
optimization problem B.2.2 with the following constraint: 

zitj + ytj < x*j,  i = 1,2,..., K , and ;' 6 /,• (3), 

where { x*}} are the solutions to the optimization problem A.l or the optimization problem A.2. 

Namely, x*. is the (expected) optimal number of flows of type / with bandwidth allocation ctj 

that can be admitted into the system (over a typical time interval).   Intuitively, whenever the 
number of flows of type i with bandwidth allocation c, • that have been admitted into the system 

exceeds JC* ., no flows of type / will be considered for a bandwidth allocation of c/>;-. By using 

the constraint (3), we, in some sense, attempt to approximate (or converge to) the optimal 
solutions obtained in the optimization problem A. 1 or the optimization problem A.2. 

Given the above optimization problem formulation, we have the following probabilistic flow 
admission control algorithm. 
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X* 
A flow of type i is admitted into the system with probability pi = y€ 

* 
z- ■ 

and assigned a bandwidth allocation of c.   with probability /?,   = —V- 
Z; 

3.4 Admission Control for Flows with Finite Duration 

In this section, we consider flows with finite duration. When a flow request arrives, it specifies 
its staring time ts and te. Let T = te-ts be the duration of the flow. To incorporate flow 

duration into our framework, we assume that the time is slotted into time units (or intervals) of 
length (the length of a "typical time interval"). Each time unit is considered a "typical time 
interval", i.e., the expected number of flows of type i arriving during a time unit is Xt. 

Now consider the arrival of a flow of type / whose duration spans T the time units %\, ?2 > ••• 

,-z„.For k = 1,2,..., n, let yfj be the number of existing flows of type i during time unit tk that 

k K k have   been   allocated   c,-j    amount   of  bandwidth.      Let   Cres-C~Y.   X  yi,jci,j    anc* 
i=l ye/,- 

C™n = min\<k<n Cres • Then using Method 1 in Section 3, where we replace Cres with C™n , 
we can maximize the expected number or expected utility of new flows that can be admitted into 
the system. Let {z*}, i = l,2,...,K be the solutions to the either of the two optimization 

problems, where in particular z* = ]T zi} , and z]. > 0 is the expected number of flows of type 

/ with a bandwidth allocation of c, .. Then this new flow of type i will be admitted into the 

system with probability p{ = ——, and assigned a bandwidth allocation of c,. y with probability 

Alternatively, we can also formulate the optimization problem using Method 2. In the following, 
we present the optimization problem formulation for the utility case, where we maximize the 
total expected utility of flows that have been or can be admitted into the system in the duration of 
the new flow of type /, namely, over the time units t\, ii,---,in- 

3.4.1 Problem Formulation C.2.2: Maximizing Total Expected Utility 

n    K , 
maximize   I X   I [z,-,;-+?/,_/]«;, 7- 
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subject to     X [zitj + y-j] < X{, for 1 < k < n and i = 1,2,..., K (4) 

1   I [ZiJ + y£j]cij<C,k = l,2,...,n 
'•=176/,- 

and z,- . > 0, / = 1,2,..., AT, and _/ e /,• 

As before, we can replace the constraint (4) above with the following constraint: 

zitj + ylj < x*j,  i = 1,2,..., K , j € /,-, and 1 < k < n (5) 

where { x*.} are the solutions to the optimization problem A.2. 

3.5 Flows with Priorities 

We now consider the problem of stochastic flow placement and admission control where flows 
have priorities (or "importance" associated with them). 

Suppose there are a total of P priorities, 0, 1,..., P-\, where 0 is the highest priority, and P-l is 

the lowest priority. For each flow type /, let Af be the expected number of flows of type / with 

priority p , where p = 0,1,...,P-l. Let   /l(be the total expected number of flows of type /, i.e., 
p-^    n h = I A? . 

We can incorporate priorities of flows into our stochastic flow placement and admission control 
framework by considering flows with highest priority first. 

Given the expected number of flows of each type that have the highest priority (i.e., A{ 's), we 
o * can use the framework discussed in the earlier sections to determine xi' ■ , the expected number 

of flows of type /  that have the highest priority and can be allocated with c(- ,•  amount of 

K 0* bandwidth. Let   Cres-C-Y.   X  xi'jciJ ■ Then   Cre^is the (expected) remaining system 
i=ljelj 

capacity that can be used to flows of lower priorities (i.e., priorities 1, ...,P-l). 

Note that if   X  *,■'/ < ^ for any /, then we must have Cres =0. Hence the (expected) remaining 

system capacity is zero. In this case, we will consider any flows of lower priorities. If Cres is not 

zero, we will consider flows with priority 1. Again using our above framework (where we replace 

C with Cres), 
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1   * 
We can determine JC,-' ,•, the expected number of flows of type i that have priority land can be 

2 1 * 2 allocated with qj amount of bandwidth. Define Cres =C- X   X xfjci,j • Then CreÄis the 

(expected) remaining system capacity that can be used to flows of lower priorities (i.e., priorities 
2,...,P-1). 

As long as C^es is not zero, we continue with the next highest priority. The procedure stops 

whenever the (expected) remaining bandwidth reaches zero. 

Using the above procedure, we can determine, xf'- the expected number of flows of type / at a 

given priority level p and with a given bandwidth allocation c- •. Based on this, we can design a 

stochastic admission control as before. For each flow type /and priority level p, 

let xf'   =   X  xf) • Then a flow of type i with priority p will be admitted into the system with 

P* 
probability qP = , and it is allocated  c- •  amount of bandwidth with probability 

P   K   I * i x*r 
/=o;=i 

p _    "1<J 
p.* xf 

qi'}       P   K 
1 !*■• 

/=o/=i 

Note that if for some priority level p, xf' =0. Then any flows of type / with a priority level p or 

lower will have a zero probability to be admitted into the system. This may not be desirable if the 
current system capacity is not zero. We can circumvent this problem by allowing a flow of type 

P-1   [     P-]   i* 
/with a priority level p or lower to be admitted into the system as long as   £ v,- < X xf  » 

/=0 /=0 

where y\ is the existing number of flows of type / with priority /, Z=0,l,..,p-1. 

In other words, flows of type /with higher priorities (0,l,...,/?-l)   have not fully utilized their 
expected bandwidth. In this case, a flow of type i with a priority level p or lower can be admitted 

into the system with an appropriate bandwidth allocation c- •. Later on, when   a flow of type 

type / with a higher priority /, /=0,l,..,/?-l arrives, this flow may be expended from the system, if 

necessary. And the new flow is allocated with the corresponding bandwidth allocation ci ■. 
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3.6 Flow Parameter Estimation 

Before we end this report, we briefly discuss how the flow parameters A;- 's can be specified and 

estimated in practice. To estimate A;- in a meaningful way, we can either divide the time axis into 

discrete (i.e., non-overlapping) intervals of length T, or use a smoothing window of length T. 
Depending on the applications, one of the two methods may be more suitable than the other. In 
addition, the parameter T should be determined based on the flow arrival rates, desired accuracy 
of estimation, system performance/complexity, and other factors. 

Although throughout the report, we have assumed that A,- is the expected number of flows of 

type i arriving during a typical time interval T. In reality, it is not necessary to define A,- to be 

the average number of flows of type i arriving over intervals of length T. We can define, for 
example, A,- to be the expected maximum number of flows of type / arriving during intervals of 

length. Specifically, let Yt the random variable denoting the maximum number of flows of type / 

arriving during an interval of length T . Then we define A,- = E[Yj ]. 

More generally, we can define A,- to be any percentile of the flow arrival distribution. Let X(be 

the random variable denoting the number of flows of type i arriving during an interval of length 
T. Let f(Xj) be the distribution of X,-. We can choose A,- to be such that Pr{X,- > A,-} < f , for 

a given nonnegative number £ , 0 < e < 1. Such a general definition of A; may be desirable in a 

system where flows have priorities. For example, we may choose e p for each priority p in such 

a manner that   0<£   <£   <■■■<£   ~    .In particular, we may choose =0. Hence, A(- denotes 

the expected maximum number of flows of type i with highest priority. As a result, our 
stochastic flow placement and admission control will attempt to accommodate as many flows 
with the highest priority as can be accommodated by the system capacity. 
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Section 4 Alternate Optimal Resource Allocation Algorithms 

In this section we report on the alternate set of optimal resource allocation algorithms developed 
by Boston University. 

4.1 Background 

Access points 

MetaNet links 

MetaNet 

Interconnection links 

Figure 1. MetaNet, Hostgroups and MetaNet Links 

(Courtesy of MetaNet-AIC Interface Functional Specification by Telcordia and JHU, V2, 
7/16/99. Slightly modified.) 

This work is part of the Coordination and Optimization of Quality-of-Service End-to-end 
Resources (CONQUER) for Adaptive Information Channels Architecture. The physical 
environment of the architecture is shown in Figure 1. Hostgroups that consist of groups of user 
hosts are connected by virtual links denoted by MetaNet link. A host group is connected to the 
network via an access point that physically may represent a port in an ATM switch, a router or a 
terminal. 

The CONQUER software architecture is shown in Figure 2. The system consists of four major 
components: IPM (Information Policy Management), AIC (Adaptive information Control), 
MetaNet, and EDM (Information Dissemination Management). The IPM layer serves as the 
interface to the commanders in the battlefield. It translates the application requests into resource 
allocation requests and passes them to the AIC layer. The AIC layer performs two critical 
functions, policy application and resource management. The MetaNet layer hides the 
technological details of the underlying network and presents them to the AIC layer as abstract 
information channels with quality-of-service parameters. 
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The resource allocation algorithms described in this report are part of the AIC layer. Their 
primary function is to do the resource reservation and allocation. 

4.2 Problem Definition 

4.2.1 Input Assumptions 

As input to the resource allocation problem, we assume that there is a finite set of channel 
requests, indexed by i = 1, ..., N. Each channel request is characterized by the following 
attributes: 

a. A source identifier, defining the origin group for the data requested by the channel 
b. A set of destinations; each destination is viewed as a separate channel request. For 

the initial algorithms, we assume that the set of destinations contains a single element 
for each request. 

c. A utility function, which defines utility as a function of bandwidth allocated. 
Specification of the utility function is discussed later. 

d. Start time for the channel, quantized to discrete intervals. 
e. End time for the channel, quantized to discrete intervals. 
f. A request identifier, which we denote by i in the rest of this paper. 
g. Priority level, corresponding to a quantized level 

For the incremental version of the algorithm, an additional input is the existing state of the 
network, as defined by the requests that are currently being serviced by the network. Each of 
these requests is described by the following information: 

a. A source identifier, defining the origin group for the data requested by the channel 
b. A set of destinations; each destination is viewed as a separate channel request. For 

the initial algorithms, we assume that the set of destinations contains a single element 
for each request. 

c. A utility function, which defines utility as a function of bandwidth allocated. 
d. A bandwidth allocation which is its current quality of service. 
e. Start time for the channel, quantized to discrete intervals. 
f. End time for the channel, quantized to discrete intervals. 
g. A request identifier, /. 
h.   Priority level. 

The resulting resource allocation problems seek to maximize value by allocating quality of 
service, measured in units of bandwidth, while guaranteeing priority service. We will expand on 
the objective later. 

In addition to information about the requests, the input specifications must also describe the 
available network. We assume that the network is described in terms of a set of virtual channels, 
one duplex channel per origin-destination unordered pair, where each channel k has an associated 
bandwidth capacity Q. This virtual channel is an abstraction of the physical interconnections 
provided by MetaNet between origin and destination locations. 
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At the heart of the optimization function is the utility function associated with each request. This 
utility function is assumed to be specified by a discrete set of (bandwidth, value) pairs, as 
illustrated in the figure below. 

cm 

Figure 3. Utility Function of A Request 

The pair with the lowest value of bandwidth is assumed to be the minimum connect bandwidth, 
below which the quality of service is unacceptable. In the diagram above, this is denoted by I(i), 
which achieves value v(i). For higher bandwidth allocations, the discrete (bandwidth, value) 
pairs can be interpolated to describe a piecewise linear function of bandwidth. Adding the 
default point (0,0), we assume that the interpolated piecewise linear function is concave, and 
represents the value achieved for any continuous bandwidth allocation greater than the minimum 
value. 

4.2.2 Notation 

We use the following notation in the remainder of this report. Let / indicate a report index, and 
let t determine a time interval index. Then, 

a. TV is the total number of requests. 
b. St is the index of the start interval for the request. 
c. e, is the index for the end interval for the request. 
d. Ui(b) is the utility of allocating bandwith b to request /. 
e. Oi is the origin index of request i 
f. Di is the destination index of request i. 
g. bi is the bandwidth allocated to request i. 
h. pi is the priority of request i. 
i.    C0d  is   the   capacity   of  the   duplex   channel,   expressed   in   bandwidth   units, 

interconnecting connecting nodes o and d. 
j.   Lj is the minimum bandwidth that receives value in the utility function for request i. 

41 



k.  Mi is the maximum bandwidth that receives value in the utility function for request i. 
1.   /() is the indicator function which is 1 if the condition is met, 0 otherwise 

With this notation, the decision variables are the allocated bandwidth values bt for the individual 
requests. These are constrained by the following relations: 

YJbiI({Oi,Di} = {o,d})I(si<t<ei)<Cod 

for all virtual links fo.djmd all time intervals t, so that the duplex link capacity is not exceeded 
for any time interval, and 

for all requests /, so that the bandwidth allocated to each request is within acceptable bounds. 

4.2.3 Objective 

We assume that priorities are ordered so that more important priorities correspond to lower 
indices. With this notation, the request acceptance problem can be evaluated hierarchically, 
priority by priority, as follows. Let Jm denote the value achieved by serving calls at priority m, 
for m - 1, ..., M. Given a set of decisions b\ which satisfy the above feasibility constraints, we 
compute Jm as follows: 

Jm = iui(bi)I(Pi<m) 

We say that a vector (Jh ..., JM) achieves better performance than a vector (J'i J'M) if the first 
vector is greater than or equal to the second vector in a lexicographical order. That is, 

• J, > J'i, or 
• // = J'i, and J? > J'i,, or 
• J] = J), and J2 - J'2, and J3 > J's , or ... 

Ji = J), and ... and JM-I = J'M-I and JM > J) M 

The above relations merely state the standard rules for priority resource allocation. First, 
evaluate the resource allocation in terms of how it serves the highest priority. An allocation that 
achieves more value by serving higher priority requests is preferred. Given two allocations that 
achieve the same value at the highest priority, the allocation that achieves a better value at the 
next highest priority is preferred. The recursive preference definition continues until all priorities 
are defined. 

A natural consequence of this objective is that it decomposes the resource allocation problem 
into a recursive procedure across priorities. First, resources are dedicated to the most important 
requests; subsequently, resources are assigned to less important requests (in terms of priority) 
until no further requests can be accommodated. This decomposition is described in the next 
subsection. 
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4.2.4 Decomposition by Priorities and Virtual Links 

Assume that requests of priority levels m = 1, ..., k-1 have already been allocated bandwidth bt, 
and that there is still some residual bandwidth remaining during some time intervals. Define the 
residual bandwidth at priority k as follows: 

Rod(t,k) = Cod-ibiI({Oi,Di} = {o,d})I(si<t<ei)I(pi<k) 
i=\ 

The objective for assigning bandwidth to priority k is to maximize the incremental utility Jk - Jk-i, 
over the choices of bandwidth assignments bt to requests of priority k, and over the virtual link 
{o,d}, as defined by: 

^-^-i = I   I  u(bi)i(Pi=k)iaoi,Di}={o,d}) 
i-llinks{o,d) 

subject to the feasibility constraints: 

ibiI({Oi,Di} = {o,d})I(si<t<ei)I(pi=k)<Rod(t,k) 

That is, the requests must satisfy the residual bandwidth constraints for all time intervals on each 
virtual link. Once priority k is satisfied, the new residual bandwidths R(>d(t,k+1) are computed, 
and requests at priority k+1 are considered. 

The above structure suggests the following decomposition: group all requests by virtual link, and 
allocate the resources of a virtual link independently, one priority at a time. 

Note the following: It is possible for an optimal allocation to contain some requests at priority 
one which are allocated no bandwidth, whereas some requests at priority 3 or 4 contain 
bandwidth. This is because the requested start and end intervals for the requests may not be 
identical for all requests. Thus, if there is an overload of priority 1 requests in a specific time 
interval, some of these requests will be rejected. Nevertheless, priority 3 requests that do not 
request this interval may still be assigned bandwidth. Thus, the concept of a "critical level" of 
priority whereby all lower-indexed priorities are assigned full bandwidth is impossible to define 
whenever requests have time duration that extends beyond a single interval. 

4.2.5 Comments 

Our continuous interpolation of the utility function assumes a continuously scaled model of 
bandwidth. In many applications, a discrete model with specific set points may be preferred. In 
particular, one can think of multimedia applications using an MPEG coding scheme. If a 
minimum of 1 Kbytes/sec and a maximum of 2 Kbytes/sec are requested, and only 1.5 Kbytes/sec 
can be allocated, then one out of every four frames can be dropped, or the lowest level of details 
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in each frame can be omitted during the MPEG encoding process. Extension of our algorithms 
to discrete models is straightforward. 

4.3 Solution Approach 

4.3.1 Formulation as Mixed-Integer 0-1 Program 

We describe a mixed-integer 0-1 programming formulation to solve the batch problem first. The 
approach begins by describing a set of tasks to be scheduled, given a residual bandwidth. These 
tasks are generated by the individual requests at the priority level under consideration, as follows: 

Assume that the current priority is k. Thus, we have available residual bandwidth numbers 
Rod(k,t) for every origin-destination set {o,d} and every time interval t. For each request i of 
priority k, we generate a set of tasks Ty where the index j ranges over the set of discrete 
bandwidth-value pairs described in the utility function. These tasks are described by the 
following information: 

a. sy = Si is the index of the start interval for the task. 
b. ejj = e{ is the index for the end interval for the task. 
c. Vtj is the value of the task i. 
d. Ojj = Oi is the origin index of the task 
e. Djj = Di is the destination index of the task. 
/ By is the bandwidth requested for the task. 
g.   Fjj is a boolean flag which indicates whether the task is scalable, and thus partial 

value can be accumulated by assigning a bandwidth less than 5y. 

What differs between different values of j for the same request / are the value Vtj, the bandwidth 
requested 5y, and the scalable flag Fy. We describe how to compute these values for a given 
request below. 

Assume that there are J ordered bandwidth-value pairs describing the utility function Uj(b), 
ordered by increasing bandwidth. A utility function with 4 values is illustrated below. 
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u.(b) 

>    b(i) 

Figure 4. Utility Function of a Request 

Denote by (b^Uy), j = 1, ..., J the ordered pairs in the utility function description for request i. 
Under the assumption that the resulting interpolated function is concave, we define the following 
tasks: 

• Task Tu has value V/y=«,•/, with bandwidth Bu = bu, and scalable flag F,7 = False. 

• Task 7/2 has value V2 = ui2 - w,y, with bandwidth 5,2 = ^/2 - bu, and scalable flag Fa = True. 

•    Task Tu has value Vj = uu - Uj(j.j), with bandwidth Bu - bu - ^/(y./> and scalable flag Fu = 
True. 

Note that each task denotes an increment in the piecewise linear utility function. The idea is that 
determining the appropriate bandwidth for a request will be done incrementally, first by 
assigning bandwidth to the first task (the minimum bandwidth, so it cannot be scaled), then by 
assigning bandwidth successively to each increment, until no additional bandwidth assignment is 
possible. 

Denote by x,j the fraction of task Ty which is allocated bandwidth. Note that Xy must be in the 
interval [0,1], and that xu must be either 0 or 1. Furthermore, one has the constraint that, for j > 
1, xtj D xu, so that no increments can be scheduled unless the minimum bandwidth has already 
been allocated for that task. The resulting task optimization problem is as follows: 

For all tasks defined from requests of priority k, select resource allocation variables Xy to 
maximize the following objective: 

1=1 7=1 
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subject to the following constraints: 

LlxijBijI({Oij,Dij} = {o,d})I(sij<t<eij)I(pi=k)<Rod(t,k) 
1=1.7=1 

xiX e {0,1}; xtj e [0,1] for j > 1; xtj < xa for j > 1 

The above formulation describes the batch problem. Next, we focus on describing the setup for 
the incremental version of the resource allocation algorithm. We make the following 
assumptions: 

• The incremental algorithm is presented with a set of new requests at different priorities. 

• The bandwidth allocation of existing requests cannot be modified; the only action on existing 
requests is to disconnect the existing request 

The setup for the incremental problem is identical to the task setup for the batch problem, except 
as to how existing requests are handled. In essence, each existing request / generates a single 
task Tu instead of multiple tasks, with parameters Bi} = bit value Vü = Uj(bj), and scalable flag 
FJI= True. 

Note that it would be easy to relax the above assumption to allow the bandwidth of existing 
requests to be modified. In essence, the setup for the incremental problem would then be 
identical to that of the batch problem. 

Note also that we have not attempted to account for new arrivals of requests. The implicit 
assumption is that new requests arrive slower than the planning horizon of existing requests. 
This initial assumption can be relaxed for future versions of the algorithm. 

4.3.2 A Branch-and-Bound Algorithm 

Both the batch and the incremental algorithms can be reduced to a unified formulation for each 
virtual link {o,d}, determining which tasks are allocated bandwidth at a given priority level k on 
that link. To simplify the notation, let w denote a task index for the W tasks considered at 
priority level k for link {o,d}. Then, the problem is to determine the variables xw given the task 
descriptions Tw, and the residual bandwidth R0(j(t,k), and the precedence inequalities among the 
task variables. The unified formulation can be expressed as: 
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w 
Maximize XVwxw 

subject to 

xw e [0,1] if w is scalable; xw e {0,1} otherwise (3.1) 

xw — xpred{w) 

W 
ZxwBwI(sw<t<ew)<Rod(t,k)for<i\\te{l,T} 

w=l 

where pred(w) is a null index if w is a non-scalable task; otherwise, pred(w) is the index of the 
non-scalable task associated with the request which generated task w. 

We can generate an upper bound on the achievable performance by solving an approximate 
problem by assuming that each task can be performed in any interval, without regards for 
continuous allocation of intervals or start times and end times, and that partial allocation of tasks 
will always result in partial value (all tasks are thus scalable). This latter assumption also 
removes the need for precedence inequalities, because of the concave nature of the utility 
function results in optimal allocations which satisfy the precedence inequalities. 

The modified upper bound problem can be expressed as a fractional knapsack problem, of the 
form 

W 
Maximize *ZVwxw 

subject to 

*we[0,l]; 
W T 
X xwBw(ew-sw+l)<JJRod(t,k) 

w=\ t=\ 

The fact that the solution of this problem is an upper bound is easy to verify, as every feasible 
solution of the original problem is also feasible in this modified problem and has the same value. 
The solution to this upper bound problem can be obtained as follows. Each task is assigned an 
index, corresponding to the marginal value per unit bandwidth, computed as 

(3.2) 
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V 
Index(w) = -  (3.3) 

Bw(ew-sw+l) 

The tasks are ranked by decreasing values of Index(w), and the variables xw are set to 1 until there 
is not sufficient bandwidth left to satisfy the bandwidth constraint. The next allocation xw is then 
set to the fraction that is required to satisfy the bandwidth constraint with equality. Note that the 
worst-case complexity of this solution approach is 0(W log W), the time required to sort the 
indices, thus resulting in fast algorithms. 

In addition to an upper bound, one can obtain a lower bound on the achievable performance by 
using a greedy heuristic to solve problem 3.1. The greedy heuristic ranks tasks according to the 
index (3.3). The algorithm proceeds as follows: 

0. Initially, let R(t) = R0d(t,k). Form index list of all w, sorted by descending index value. 

1. Let w denote the task with largest index remaining 

a. If w is not scalable, check whether Bw D DR(t) for all t in [sw,ew]. If true for all t in the 
interval, then set xw = 1, remove w from list, and adjust residual bandwidths as R(t)=R(t) 
- Bw for all t in [.s^eiv]. Continue with step 2. 

b. If w is scalable, check whether xpred(w)= 1 • If not, set xw = 0, remove w from the list and 
continue to step 2. If xpred(W)=l, set 

.       R(sw) R(sw+l)      R(eJ 
*w=mm{l,—*-,—* '-'-^ 

^w w w 

and adjust the residual capacity as R(t)=R(t) - xwBn for all t in [sw,en].  Remove w from 
the list, and continue with step 2. 

2. If list is not empty, return to 1. 

It can be shown that the greedy heuristic above generates a feasible assignment to problem 3.1, 
and thus produces a lower bound to the optimal value achieved by the solution of problem 3.1. 
Again, the worst case complexity of the algorithm is O(WlogW). 

The above bounds can be used to design a branch and bound algorithm for the exact solution of 
problem 3.1, which is described in the next section. 

4.4 Branch-and-bound Algorithm Design and Implementation 

The basic idea in a branch and bound algorithm is to fix the values of some of the integer valued 
variables (the non-scalable tasks) to either 0 or 1, and to obtain bounds on the achievable 
performance by computing the upper and lower bound solutions described in the previous section 
for the remaining variables. The resulting performance can be incorporated into a search 
strategy. 
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The 0-1 structure of our discrete decision variables suggests that one can construct a binary tree 
recursively, by selecting a variable that will be used tö form a branch. In the branch-and-bound 
algorithm, we use the following rule for selecting a branching variable: The last integer variable 
to be assigned non-zero bandwidth in the upper bound solution is the next variable to be used in 
the branching value. The reason for this choice is that this integer value is likely to be a 
"controversial" decision as to whether it is worth allocating bandwidth to this request. Thus, the 
branch should explore the consequences of making this decision as early as possible. 

The branch-and-bound algorithm constructs a tree of nodes composed of decision problems. 
Each decision problem is characterized by assigning 0-1 values (depending on the branch) to a 
subset of non-scalable tasks. At each node, upper and lower bounds on the achievable 
performance are computed as follows: An upper bound is computed by adding the value achieved 
by the fixed non-scalable tasks to the values computed using the upper and lower bound 
algorithms described above for the remaining variables. 

Given a partial tree of decision problems with associated upper and lower bounds, we proceed as 
follows: 

1. Compute the upper and lower bounds assuming that no non-scalable decision variables are 
fixed. Use this node as the root node of the tree. Initialize the highest lower bound to the 
lower bound, and the best lower bound solution to the lower bound solution. Initialize the 
sorted list of nodes to the root node. 

2. Find the most promising leaf node in the sorted list; that is, the leaf node with the highest 
upper bound. Remove this node from sorted list. If the highest upper bound is less than or 
equal to the best lower bound found so far, stop and declare the best lower bound solution as 
the optimal solution. Otherwise, proceed to step 3. 

3. Select the branching non-scalable task to branch as the worst-ranked non-scalable task which 
received bandwidth allocation in the upper bound problem at the leaf. If no such task can be 
found, remove current node from sorted node list and return to step 1. From the current leaf 
as parent, form two children leaves in the tree, corresponding to fixing value 0 or value 1 
allocation for the branching task. 

4. For each of the two child leaves, compute upper and lower bound values as indicated above. 

5. Compare the lower bound values for the two leaf nodes to the best lower bound value found 
for all other nodes. If the best lower bound value for either leaf node is higher, store the 
highest lower bound leaf value and the associated task allocations as the best lower bound 
value found so far. 

6. Insert each of the two child leaves into sorted list of nodes, and repeat steps 2-6 until an 
optimal solution is found or no further nodes can be explored. 
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The above algorithm is guaranteed to stop after enumerating all of the tree nodes corresponding 
to combinations of non-scalable task values. However, it is not guaranteed to find the optimal 
solution to problem 3.1, as illustrated by the example below: 

Example: Assume that there are three time periods, with available residual bandwidth 1.2, 
2.6 and 1.2 respectively. There are three non-scalable tasks of the same priority, described as 
follows: 

• Task 1 has value 6, bandwidth 1, start time 1 and end time 3. 

• Task 2 has value 3.8, bandwidth 1, start time 2, end time 3. 

• Task 3 has value 3.5, bandwidth 1, start time 1, end time 2. 

Note that the tasks are ordered in the same order as the upper and lower bound would 
consider them. The upper bound computes the total bandwidth of 5 units, and assigns 3 units 
to task 1 and 2 units to task 2 for a total upper bound value of 9.8. The lower bound starts by 
scheduling all of task 1 in the intervals 1, 2, 3, thereby leaving residual bandwidths 0.2, 1.6 
and 0.2. The next step is to schedule 0.2 of task 2, leaving residual bandwidth 0.2, 1.4, 0. 
The final step is to schedule 0.2 of task 3, leaving residual bandwidth 0, 1.2, 0, and achieving 
a total value of 6 + .76 + .7 = 7.46. 

Since there are no non-scalable tasks, the algorithm stops with the assignment of 7.46. Note 
that this is far from the optimal assignment, which consists of scheduling tasks 2 and 3 in 
full, plus 0.2 of task 1, for a total value of 8.5, leaving residual bandwidth 0, .4 and 0. 

We can easily extend the above branch-and-bound algorithm to an optimal algorithm by using a 
more sophisticated lower bound whenever there are no non-scalable tasks receiving bandwidth in 
the upper bound problem. The extension requires computing a tighter upper bound by solving 
the relaxed linear program associated with problem 3.1, and continuing the logic. If the solution 
still has no non-scalable tasks receiving bandwidth, then the upper bound is also a lower bound, 
and an optimal set of bandwidth allocations has been found. 

We have chosen not to implement this extension because it is not needed when there is only one 
request which is scalable. For this special case, the above algorithm is guaranteed to yield an 
optimal solution. This restricted case was the problem solved in the initial AIM design. 

4.5 Algorithm Implementation 
The specific implementation of the algorithm is based on the following assumptions: 

1. There is a single new request, with a single origin and destination, thus for a single virtual 
channel. 

2. The bandwidth allocation of any existing request on that virtual channel cannot be modified, 
but that request can be dropped. 
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Thus, the resource allocation decision is whether to accept the new request on the channel, at 
what bandwidth, and which of the existing requests should be dropped to make room for the new 
request. 

4.5.1 Input 

The following objects, should be input to the optimization subroutine: 

a. A table of virtual channel entries, describing the existing requests present in the network, 
of class AICChannelTable. We assume that the current request is included in this table, 
and a pointer to this entry is available. 

b. A table of available bandwidth for each origin-destination pair per priority, represented 
as a constraint table. This bandwidth represents the total available bandwidth in each 
interval for a new request at a specified priority, and thus assumes that lesser priority 
requests will be preempted. 

4.5.2 Output 

The output class RAOutput includes the following information: whether the current request is 
allocated any bandwidth, and, if so, the allocated bandwidth and the list of similar priority 
existing channels which should be preempted to allocate bandwidth for the current request. It is 
assumed that all existing channels of lesser priority will be interrupted first before interrupting 
the indicated channels of the same priority. 

4.5.3 Internal Data Structures 

The internal data structures required are summarized below: 

• Channel is the abstraction of the specific virtual channel which is the origin-destination pair 
for the current request. It is described by a bandwidth parameter. 

• Request is the abstraction for the tasks described in Sections 3 and 4. It is described in 
Appendix B. 

• Heap is the list of active leaf nodes in the branch-and-bound tree, organized in a max-heap 
indexed by the value of the upper bound so that retrieving the next best upper bound is an 
O(l) operation. It is described in Appendix B. 

• HeapNode is the description of a resource allocation subproblem in the branch-and-bound 
tree. It includes flags designating which variables are still available for optimization, which 
non-scalable task index is to be used for branching, and the values of the upper and lower 
bounds. 

4.5.4 Algorithm Processing 

Step 1. [Initialization] Determine the set of tasks that will be considered in the allocation. 
The assumption is that all virtual channels are duplex links. Thus, the algorithm first 
identifies all existing requests in the AICChannelTable which originate at either the origin 
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node or the destination node of the new request and have the same priority. This is the set of 
requests that will contend with the new request for bandwidth. It also initializes the 
available capacity of the channel at each interval to that determined in the constraint table for 
the priority of the new request. 

Step 2. [Task Creation] For the new request, retrieve the discrete points which specify its 
utility function, and create tasks according to the logic in Sections 3 and 4 for each piecewise 
linear piece of the utility function. This results in one non-scalable and several scalable tasks 
for the new request. 

For the list of existing requests at the same priority as the new request, and on the same 
virtual channel, get the current bandwidth allocation and use the request's utility function to 
compute its utility. Create a non-scalable task for the request with the existing bandwidth 
allocation and utility, and with start time as the first time interval, end time as the end 
interval. For times in the task interval, increment the channel capacity by the allocated 
bandwidth, because this bandwidth is now available for reallocation, in addition to the initial 
channel bandwidth. 

Step 3. [Preprocessing] Compute the value/bandwidth ratio for all the tasks, and sort the 
tasks in an array in decreasing order of value/bandwidth ratio. 

Step 4. [Initialize Branch-and-Bound Heap] Initialize the Branch-and-Bound heap with the 
task allocation problem with no prior allocation constraints. Compute the upper and lower 
bounds as described in Section 4 for this problem. Compute the best lower bound solution. 
Compute also the index of the branching variable in the solution, according to the logic in 
Section 4. 

Step 5. [Recursive Branch-and-Bound Solution] 

a. Select problem node at top of heap and remove from heap. If there is no problem, 
exit. 

b. If the upper bound of this problem is within a tolerance value of the best lower bound 
found so far, exit. The near-optimal solution is found in the best lower bound. 
Otherwise, continue. 

c. If there is no branching variable for this node, return to a and retrieve another 
problem. 

d. Create the left child problem of the current problem node, corresponding to setting the 
branching variable equal to 0. 

e. Compute the upper and lower bounds for the left child problem. 

f. If the lower bound is higher than the lower bound of the best solution, make the best 
solution equal to that of this child problem. Insert the left child into the heap, and 
reform the heap. 

52 



g. Create the right child problem of the current problem node, corresponding to setting 
the branching variable equal to 1. Check to see whether there is enough available 
bandwidth in each required interval for the task. If not, return to a. If there is, reduce 
the bandwidth appropriately in each interval for scheduling the task, mark the variable 
as assigned, and compute upper bounds and lower bounds for the right child problem. 

h. If the lower bound is higher than the lower bound of the best solution, make the best 
solution equal to that of this child problem. Insert the right child into the heap, and 
reform the heap. 

Step 6. [Output] The best solution found by the branch and bound indicates which tasks 
were allocated bandwidth, and what fraction of the required bandwidth was allocated. For 
all tasks generated by the current request, sum up their bandwidths to determine the allocated 
bandwidth to the current request. For all tasks corresponding to existing requests, if the 
allocated bandwidth is 0, include the tasks in the preemptable task list. 

4.6 Extensions and Suggestions for Future Work 

There are three main limitations of the algorithm described above: 

1. There is no flexibility in the required start and end times for each request. If each request 
received a minimum start time and a maximum start time, there would be an additional 
scheduling problem associated with determining the start time of the request. Extension of 
the approach described in this report to address this problem in an optimal manner remains an 
open problem. 

2. The abstraction used for the scheduling algorithm assumes that there are no dependencies 
among virtual channels. This is a major issue with the AIC layer abstract model of the 
underlying networks. It is difficult to represent explicitly how different origin-destination 
channels can use the same physical network resources, and thus create interference in the 
network resource allocation. This problem remains an issue for further investigation. 

3. The explicit service model in a time-varying, dynamic environment needs to be modeled 
better. The current model does not explicitly consider "value lost" by interrupting an existing 
service on a link. Furthermore, it tries to commit the full set of bandwidths available to serve 
the current requests. Due to the first year interface restrictions, one was unable to modify the 
bandwidth allocation to existing requests. Thus, when new requests arrive, one must 
interrupt existing requests to create room for the new requests. Ideally, we should model the 
expected arrival of new requests, and reserve some space for important new requests that can 
interrupt lower-priority requests. 
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